

МЕХАНИЗМ ИСПОЛНИТЕЛЬНЫЙ ЭЛЕКТРИЧЕСКИЙ ОДНООБОРОТНЫЙ МЭО-08К

Руководство по эксплуатации СНЦИ.421311.078 РЭ Руководство по эксплуатации предназначено для ознакомления потребителя с механизмом исполнительным электрическим однооборотным МЭО-08К (далее - механизм) и содержит сведения о технических данных механизма, его устройстве, принципе действия, мерах по техническому обслуживанию, транспортированию и хранению, а также другие сведения, соблюдение которых гарантирует безопасную работу механизма.

1 Описание и работа механизма

1.1 Назначение

1.1.1 Механизм предназначен для перемещения регулирующих органов в соответствии с командными сигналами регулирующих и управляющих устройств.

Область применения: системы автоматического регулирования технологическими процессами.

- 1.1.2 По устойчивости к воздействию климатических факторов внешней среды механизм соответствует климатическому исполнению и категории размещения по ГОСТ 15150-69:
- У2, но для работы при температуре от минус 30°C до плюс 50°C, относительной влажности до 95 % при температуре плюс 35°C и более низких температурах без конденсации влаги.
- T2, но для работы при температуре от минус 10°C до плюс 50°C, относительной влажности до 100 % при температуре плюс 35°C и более низких температурах с конденсацией влаги.
- 1.1.3 Механизм не предназначен для работы в средах, содержащих агрессивные пары, газы и вещества, вызывающие разрушение покрытий, изоляции и материалов, и во взрывоопасных средах.
- 1.1.4 По защищенности от попадания твердых тел (пыли) и проникновения воды механизм должен соответствовать степени защиты IP54, оболочки механизма категории 2 по ГОСТ 14254-96.

1.2 Технические характеристики

1.2.1 Основные параметры механизмов приведены в таблице 1.

Таблица 1

Условное обозначение механизма	Номин. момент на выход- ном валу, Н·м	Номин. время полного хода выходного вала, с	Номин. полный ход выходно- го вала, обороты	Масса, кг, не более	Потреб- ляемая мощ- ность, Вт, не более
МЭО-630/10-0,25-08К	630	10	0,25	135	300
МЭО-630/25-0,63-08К		25	0,63		
MЭO-1600/25-0,25-08K	1600	25	0,25		
МЭО-1600/63-0,63-08К		63	0,63		
MЭO-1600/30-0,25-08K		30	0,25		
MЭO-1600/75-0,63-08K		75	0,63		
MЭO-1600/63-0,25-08K		63	0,25		210
MЭO-1600/160-0,63-08K		160	0,63		

1.2.2 Электрическое питание двигателей механизма осуществляется трехфазным переменным током напряжением 380 В с частотой 50 Гц.

Допустимое отклонение напряжения питания от номинального от минус 15 % до плюс 10 % и частоты \pm 2 %. При этом отклонения напряжения и частоты не должны быть противоположными.

- 1.2.3 Режим работы механизма повторно-кратковременный реверсивный с частотой включения до 320 в час и продолжительностью включений до 25 % при нагрузке на выходном валу в пределах от номинальной противодействующей до 0,5 номинального значения сопутствующей. При этом механизм допускает работу в течение одного часа в том же режиме с частотой включений до 630 в час и продолжительностью включений до 25 %, с последующим повторением не менее чем через три часа. Интервал времени между выключением и включением на обратное направление не менее 50 мс.
- 1.2.4 Механизм обеспечивает фиксацию положения выходного вала при номинальной нагрузке при прекращении подачи напряжения питания.
- 1.2.5 Люфт выходного вала механизма при нагрузке, равной (5-6) % номинального значения, не должен быть более 0,75°.
- 1.2.6 Пусковой крутящий момент механизма при номинальном напряжении питания должен превышать номинальный момент не менее чем в 1,7 раза.

- 1.2.7 Выбег выходного вала механизма при сопутствующей нагрузке на выходном валу механизма, равной 0,5 номинального значения и номинальном напряжении питания не должен быть более:
- 1 % полного хода выходного вала для механизма со временем полного хода 10 c;
- 0,5 % полного хода выходного вала для механизма со временем полного хода 25 с и более:
- 0,25 % полного хода выходного вала для механизма со временем полного хода 63 с и более.
- 1.2.8 Габаритные и установочные размеры механизма приведены в приложении А.

1.3 Состав, устройство и работа механизма

- 1.3.1 Принцип работы механизма заключается в преобразовании электрического командного сигнала регулирующих и управляющих устройств во вращательное перемещение выходного вала.
 - 1.3.2 Состав механизма приведен в приложении А.
 - 1.3.3 Редуктор

Редуктор (приложение Б) является основным узлом, на котором устанавливаются все остальные узлы, входящие в механизм.

В состав редуктора входит механический тормоз (приложение В) нормальнозамкнутого типа. Тормоз служит для ограничения выбега и для фиксации положения выходного вала механизма под нагрузкой при отключении напряжения питания.

При отсутствии вращательного момента со стороны двигателя пружина 4 прижимает полумуфту 2, связанную с валом 3 лысками, к фрикционному кольцу 14, приклеенному к корпусу 1. В результате шестерня 5 заторможена.

При подаче момента двигателя через сухарь 7 на полумуфту 15, свободно вращающуюся относительно вала и корпуса, шарики отжимают полумуфту 2 и передают ей вращение, которое передаётся валу и шестерне 5. Необходимое осевое смещение полумуфты 2 ограничивается зазором S, кроме того, для нормальной работы необходим начальный свободный угловой люфт полумуфты 15 (5 ... 10)°.

При эксплуатации механизма тормозной диск изнашивается, зазор S увеличивается, начальный люфт уменьшается, что приводит к ухудшению статических и динамических характеристик механизма и увеличению минимального значения нагрузки на валу, необходимой для достаточного размыкания тормоза.

Корректировка износа тормозного диска производится, как правило, при плановом техническом обслуживании механизма.

В состав редуктора входит дифференциальная планетарная передача. Наличие передачи позволяет использовать ручной привод независимо от включенного или выключенного состояния электродвигателя.

1.3.4 Электропривод

Электропривод (приложение Д) представляет собой сборку из электродвигателя асинхронного 3, закреплённого на фланце 2, с насаженной на вал полумуфтой 1. Фланец имеет отверстия для крепления к редуктору.

1.3.5 Блок сигнализации положения (приложение А)

Механизм изготавливается с блоком концевых выключателей БКВ или с одним из блоков сигнализации положения выходного вала: токовым БСПТ, индуктивным БСПИ, реостатным БСПР. БКВ входит в состав блока сигнализации положения.

Устройство, технические данные и принцип работы блоков сигнализации приведены в соответствующей эксплуатационной документации, поставляемой с механизмом.

В БКВ предусмотрены два путевых и два концевых выключателя для сигнализации крайних и промежуточных положений выходного вала. Каждый выключатель имеет размыкающий и замыкающий контакты с раздельными выводами на контакты штепсельного разъёма без перемычек.

Для работы с реостатными и индуктивными блоками сигнализации положения выпускаются нормирующие преобразователи: НП-И10А для индуктивных, НП-Р20А для реостатных, БУ-60 для индуктивных и реостатных.

Механизм, оснащенный токовым датчиком положения, комплектуется выносным блоком питания.

Выключатели допускают коммутацию:

- в цепях переменного тока частотой 50 Гц, напряжением до 242 В ток через замкнутые контакты от 20 до 1000 мА;
- в цепях постоянного тока напряжением 24 и 48 В через замкнутые контакты от 20 до 1000 мА, при этом падение напряжения на замкнутых контактах не превышает 0,25 В;
- время срабатывания при замыкании и размыкании должно быть не более 0,04 с.

Выключатели положения выходного вала механизма обеспечивают раздельную настройку рабочего хода выходного вала, как в сторону «открытия», так и в сторону «закрытия» на любом участке от 0 % до 100 % полного хода выходного вала.

1.3.6 Штуцерный ввод

Штуцерный ввод 5 (приложение A) с размещенным в нем разъемом предназначен для подключения внешних электрических цепей (электродвигателя, управления и сигнализации) к механизму.

Хвостовики контактов разъема допускают присоединение проводов сечением до 1,75 мм² методом пайки.

- 1.3.7 Схема электрическая принципиальная механизма приведена в приложении Е.
- 1.3.8 Ручное перемещение выходного вала механизма осуществляется вращением ручки ручного привода 4 (приложение A).

2 Использование по назначению

2.1 Меры безопасности при подготовке механизма к эксплуатации

- 2.1.1 Эксплуатацию механизма разрешается проводить лицам, имеющим допуск к эксплуатации электроустановок напряжением до 1000 В и ознакомленным с настоящим руководством по эксплуатации и эксплуатационной документацией на узлы механизма.
- 2.1.2 Все работы по ремонту, настройке и монтажу механизма производить при полностью снятом напряжении питания. На щите управления укрепить табличку с надписью ВНИМАНИЕ: НЕ ВКЛЮЧАТЬ РАБОТАЮТ ЛЮДИ.
 - 2.1.3 Работы с механизмом производить только исправным инструментом.
- 2.1.4 При удалении старой смазки и промывке деталей и узлов механизма необходимо работать в индивидуальных средствах защиты.
 - 2.1.5 Корпус механизма и электродвигателя должны быть заземлены.
- 2.1.6 Эксплуатация механизма должна осуществляться при наличии инструкции по технике безопасности, учитывающей специфику соответствующего производства и утвержденной руководством предприятия потребителя.

2.2 Правила и порядок осмотра и проверки готовности механизма к использованию

- 2.2.1 Перед установкой механизма на объект необходимо проверить его работоспособность от ручного привода. Для этого проверить плавность перемещения выходного вала механизма, провернув ручку ручного привода на несколько оборотов.
- 2.2.2 Механизм может устанавливаться на объекте с любым пространственным расположением выходного вала. При установке предусмотреть место для его обслуживания.
- 2.2.3 После установки заземлить механизм медным проводом сечением не менее 4 мм², тщательно зачистив предварительно место присоединения. Сопротивление заземляющего устройства должно быть не более 10 Ом. Соединение предохранить от коррозии нанесением слоя консистентной смазки.
- 2.2.4 Сняв крышку клеммной коробки электродвигателя, убедиться, что при подаче напряжения питания на контакты 1, 2, 3 (приложение E) выходной вал механизма поворачивается и изменяет направление вращения при изменении чередования фаз питания.
- 2.2.5 Подключение электрических цепей осуществляется через штуцерный ввод 5 (приложение A), для чего необходимо:
 - отвинтив крепёжные винты, снять штуцерный ввод;
 - отвинтив крепёжные винты, вынуть из соединителя розетку;

- ослабить гайки 8 и пропустить через штуцерные вводы кабели, предварительно просверлив отверстия необходимого диаметра в уплотнительных кольцах 10 и, при необходимости, в прижимающих их шайбах 11;
- припаять провода к розетке, предварительно надев на них электроизоляционные трубки и пропустив концы проводов через отверстия хвостовиков розетки; при пайке использовать бескислотные флюсы; места пайки покрыть лаком или эмалью; установить электроизоляционные трубки;
 - установить розетку на место и закрепить винтами;
 - затянуть гайки штуцерных вводов;
- проверить сопротивление изоляции между контактами розетки оно должно быть не менее 20 MOм;
 - установить штуцерный ввод на место и закрепить винтами;
- винты крепления ввода штуцерного, гайки штуцерного ввода покрыть лаком AK-113 ГОСТ 23832-79.

2.3 Указания по включению и опробованию работы механизма

Для ввода механизма в действие на месте эксплуатации необходимо произвести его настройку и регулировку в следующей последовательности:

- снять упоры 12 (приложение A), перемещая ручным приводом 4 рычаг 13 механизма определить крайние положения рабочего угла поворота рычага;
 - установить упоры в крайних положениях рабочего угла поворота рычага;
 - установить регулирующий орган в среднее положение;
- снять крышку 6 и провести настройку блока сигнализации положения в соответствии с эксплуатационной документацией на блок;
 - установить крышку на место и закрепить винтами;
 - пробным включением проверить работоспособность механизма.

2.4 Перечень возможных неисправностей

Перечень возможных неисправностей, вероятные причины их возникновения и методы устранения приведены в таблице 2.

Таблица 2

таолица 2			
Наименование неисправности, внешнее проявление и дополнительные признаки	Вероятная причина	Методы устранения	
При включении механизм не	Нарушена электрическая цепь.	Проверка цепи.	
работает	Не работает электродвигатель.	Замена электродвигателя	
	Механизм стоит на упоре.	или его ремонт.	
Двигатель в нормальном	Появились короткозамкнутые	Заменить электродвига-	
режиме работы перегрева-	витки в обмотке.	тель или произвести его	
ется.		ремонт.	
	Износ тормозного кольца, уве-	Регулировка тормоза.	
	личен рабочий зазор S.		
При работе механизма про-	Сбилась настройка микровы-	Настройка в соответствии	
исходит срабатывание кон-	ключателей блока сигнализа-	с рекомендациями руко-	
цевых выключателей рань-	ции положения	водства по эксплуатации	
ше или после прохождения		на блок сигнализации по-	
крайних положений рабоче-		ложения	
го хода При работе блока сигнали-	Неисправность блока сигнали-	Проверка цепи и датчика	
зации положения выходной	зации положения	проверка цепи и датчика	
сигнал не изменяется или	сации положения		
не срабатывает микропере-			
ключатель			
Увеличен люфт механизма.	Попала смазка на тормозные	Очистка тормозного коль-	
Механизм не держит нагруз-	кольца и (или) износ тормозно-	ца, регулировка тормоза.	
ку.	го кольца.		

3 Техническое обслуживание механизма

3.1 Общие указания

- 3.1.1 При эксплуатации механизма необходимо проводить плановопредупредительные осмотры (далее - ППО), периодичность которых определяется эксплуатирующей организацией, но не реже чем через год.
- 3.1.2 При проведении ППО не требуется соблюдение дополнительных мер безопасности, кроме общих, изложенных в 2.1.
 - 3.1.3 Рекомендуется следующая последовательность проведения ППО:
 - отключить механизм от источника питания;
 - очистить наружные поверхности механизма от грязи и пыли;
- проверить затяжку всех крепёжных болтов, болты должны быть равномерно затянуты;
- проверить состояние заземляющего устройства и при наличии ржавчины механизм должен быть заземлён заново по 2.2.3;
- проверить настройку блока сигнализации положения и при необходимости провести подрегулировку в соответствии с его эксплуатационной документацией;
 - пробным включением проверить работоспособность механизма.
- 3.1.4 Средний срок службы механизма не менее 15 лет. При этом необходимо проводить планово-предупредительные ремонты (далее ППР) через два года эксплуатации.

3.2 Осмотр и проверка

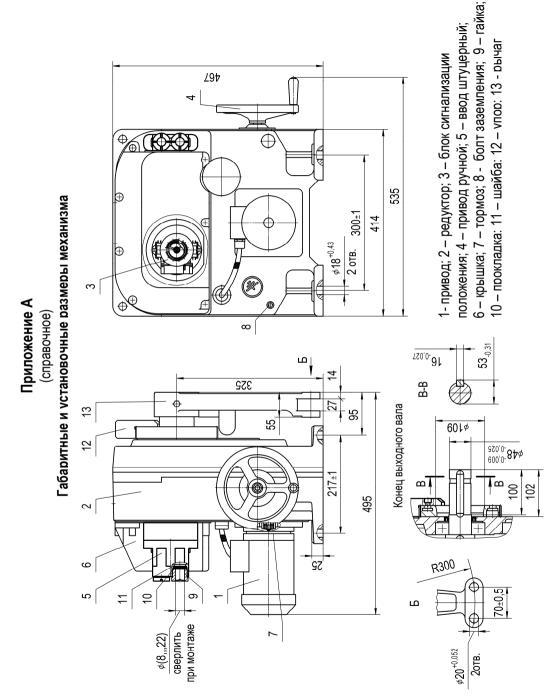
- 3.2.1 Рекомендуется следующая последовательность проведения ППР:
- отключить механизм от источника питания;
- снять с места установки и последующие работы проводить в мастерской;
- разобрать механизмы до состояния возможности удаления старой смазки в редукторе;
- промыть все детали и высушить. Собрать редуктор, смазав трущиеся поверхности подвижных частей (венцы зубчатых колес, подшипники) смазкой ЦИАТИМ-203 ГОСТ 8773-73;
- 3.2.2 Ввиду износа фрикционного кольца рекомендуется при наработке (150-250) часов произвести осмотр и подрегулировку тормоза.
 - 3.2.3 Разборка и подрегулировка механического тормоза
 - снять узел тормоза 7 (приложение А);
 - расконтрить гайку 11 от шайбы 12 и вывернуть (приложение В);
 - снять шестерню 5, втулку 6, кольца 17, подшипник 16, пружину 4;
 - снять быстросъемную шайбу 18 и сухарь 7;
 - расконтрить гайку 9 от шайбы стопорной 10 и вывернуть;
 - снять вал 3 вместе с диском 2 и шариками 13, кольца 8.

Снять крышку 2 (приложение Г) и переставляя кольца 3 с левой стороны подшипника на правую, обеспечит перепад поверхностей А и Б в пределах 0,1 мм.

Установить и закрепить крышку 2 в исходное положение.

- 3.2.4 Сборку тормоза производить в обратной последовательности, учитывая требования, указанные в приложениях В, Г.
- 3.2.5 После сборки механизма произвести его обкатку. Режим работы при обкатке по 1.2.3.
- 3.2.6 Порядок технического освидетельствования определяется эксплуатирующей организацией.
- 3.2.7 Порядок и способ консервации определяется эксплуатирующей организацией.

4 Транспортирование и хранение


4.1 Механизм в упаковке предприятия-изготовителя допускается транспортировать в крытых вагонах, универсальных контейнерах, крытых машинах, в трюмах речных судов и авиационным транспортом при условии транспортирования 5 по ГОСТ 15150-69, но при атмосферном давлении не ниже 36,6 kPa и температуре не ниже минус 50°C, или условиях транспортирования 3 при морских перевозках в трюмах.

Транспортирование на самолетах должно осуществляться в герметизированных отапливаемых отсеках.

Во время погрузочно-разгрузочных работ и транспортирования упакованный механизм не должен подвергаться ударам и воздействию атмосферных осадков. Способ укладки упакованного механизма на транспортное средство должен исключать его самопроизвольное перемещение.

Время транспортирования не более 60 суток.

- 4.2 Условия хранения механизма в упаковке по группе 3 или 5 ГОСТ 15150-69.
- 4.3 Срок хранения механизма в неповрежденной упаковке предприятия-изготовителя с момента изготовления 36 месяцев.

Приложение Б (справочное)

Редуктор

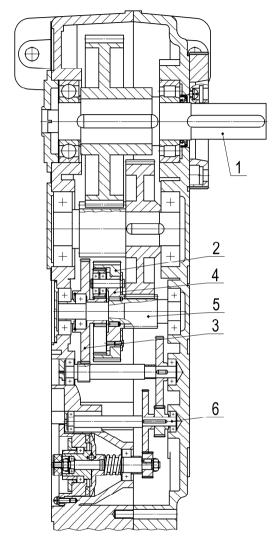


Рис.1 – для МЭО -1600/25-0,25; МЭО -1600/63-0,63; МЭО-1600/30-0,25; МЭО -1600/75-0,63;

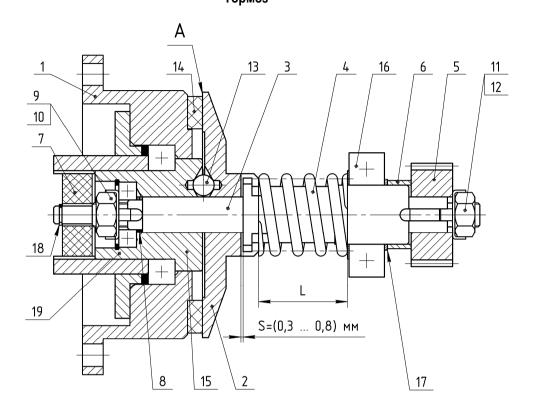
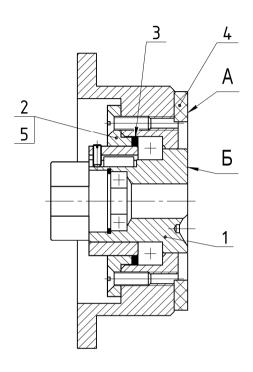

M9O -1600/63-0,25; M9O -1600/160-0,63

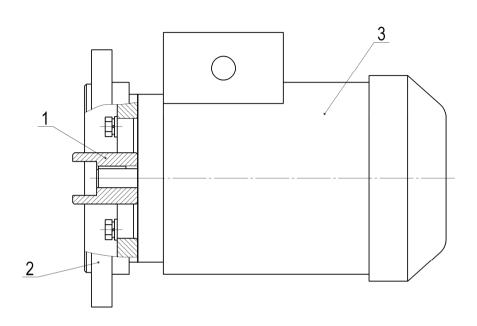
рис.1

Рис.2 – для МЭО -630/10-0,25; <u>МЭО -630/25-0,63</u> Остальное – см.


- 1 вал выходной; 2 узел ручного привода; 3 колесо;
- 4 планетарная передача; 5 –вал; 6 вал

Приложение В (справочное) Тормоз

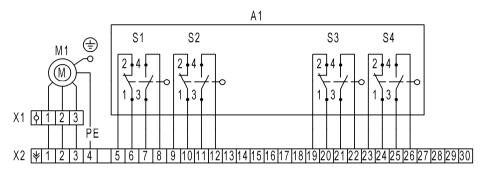
- 1 корпус; 2 полумуфта; 3 вал; 4 пружина; 5 шестерня; 6 втулка;
- 7 сухарь; 8 кольцо дистанционное; 9, 11 гайка; 10, 12 шайба стопорная,
- 13 шарик; 14 кольцо фрикционное; 15 полумуфта; 16 подшипник;
- 17 кольцо; 18 шайба; 19 полумуфта
 - 1. Плоскость А обезжирить.
 - 2. Сжатие пружины поз.4 виток к витку не допускается.
 - 3. Размер S обеспечить кольцами поз.8.
 - 4. Трущиеся части вала поз.3 смазать тонким слоем смазки ЦИАТИМ-203.
 - 5. Гайки поз.9, 11 законтрить отгибом шайб поз.10, 12 по граням.


Приложение Г (справочное) **Тормоз**

1 – полумуфта; 2 – крышка; 3 – кольца; 4 – кольцо фрикционное; 5 - винт

Перепад поверхностей А и Б в пределах 0,1 мм обеспечить кольцами поз.3.

Приложение Д (справочное) Электропривод


1 – полумуфта; 2 – фланец; 3 - электродвигатель

Приложение Е

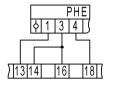
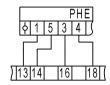

(рекомендуемое)

Схема электрическая принципиальная механизма


Рис. 1 - с БКВ-21

<u>Рис. 2 - с БСПТ-21 или БСПТ-10М</u> Остальное - см. рис. 1

<u>Рис. 3 - с БСПТ-10</u> Остальное - см. рис. 1

<u>Рис. 4 - с БСПИ-10 или БСПИ-21</u> Остальное - см. рис. 1

L1 L2 1 2 3 1 2 3)[13]14]15]16]17]18](

R1
1 3 2
2 13 14 15 16 17 18]

<u>Рис. 6 - с БСПР-10</u>

Остальное - см. рис. 1 R1 R2 1 2 3 4 5 6

М1 – электродвигатель

L1, L2 – катушки индуктивности

R1, R2 – резисторы

S1, S2, S3, S4 -микропереключатели